Ebene euklidische Geometrie: Algebraisierung, Axiomatisierung und Schnittstellen zur Schulmathematik

· ·
· Springer-Verlag
ელწიგნი
332
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

In diesem Lehrbuch stellen die Autoren einen axiomatischen Zugang zur ebenen Geometrie dar, der im Vergleich zu den Hilbertaxiomen und anderen oft gewählten Zugängen strukturelle und didaktische Vorteile bietet. Dieser auf metrischen Räumen basierende Zugang wird ausführlich motiviert und didaktisch aufbereitet. Ein besonderes Augenmerk liegt auf der besseren Verzahnung der Mathematikausbildung der Lehramtsstudierenden mit dem Schulstoff. In Ergänzung des axiomatischen Zugangs erklären die Autoren auch, wie man sich der ebenen Geometrie mit Mitteln der linearen Algebra nähern kann und stellen so den Bezug zur analytischen Geometrie der Oberstufe her.

Als weitere Schnittstellen zwischen Schulmathematik und axiomatischer Geometrie werden die Begriffe Kongruenz und Symmetrie vertieft und so wichtigen Zusammenhänge zwischen den Begriffen Isometrie, Kongruenz und Symmetrie transparent gemacht und in schultypische Kontexte eingebettet.

ავტორის შესახებ

Dr. Max Hoffmann ist Lehrer für Mathematik und Informatik. Aktuell forscht und lehrt er an der Universität Paderborn in der Mathematikdidaktik.
Prof. Dr. Joachim Hilgert ist Professor im Ruhestand an der Universität Paderborn und hat zuvor die Arbeitsgruppe "Lie-Theorie" geleitet.
Prof. Dr. Tobias Weich forscht und lehrt an der Universität Paderborn und leitet dort die Arbeitsgruppe "Spektralanalysis".

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.