Eisenstein Series and Applications

· ·
· Progress in Mathematics Книга 258 · Springer Science & Business Media
Электронная книга
314
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually interacting with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series.

The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications that have arisen in several recent developments in arithmetic: Arakelov intersection theory on Shimura varieties, special values of L-functions and Iwasawa theory, and equidistribution of rational/integer points on homogeneous varieties. Key questions that are considered include: Is it possible to identify a class of Eisenstein series whose Fourier coefficients (resp. special values) encode significant arithmetic information? Do such series fit into p-adic families? Are the Eisenstein series that arise in counting problems of this type?

Contributors include: B. Brubaker, D. Bump, J. Franke, S. Friedberg, W.T. Gan, P. Garrett, M. Harris, D. Jiang, S.S. Kudla, E. Lapid, K. Prasanna, A. Raghuram, F. Shahidi, R. Takloo-Bighash

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.