Encapsulated Nanomaterial and Plant Interfaces

·
· Academic Press
電子書籍
450
ページ
利用可能
この書籍は 2026年1月1日にご利用いただけるようになります。リリースされるまで請求は行われません。

この電子書籍について

Encapsulated Nanomaterial and Plant Interfaces critically examines the role of encapsulated nanoparticles in plants, and the resulting mechanism adopted by the plants at the biochemical and molecular levels to enhance plant growth and mitigate various stresses. Beginning with an overview of these engineered nanomaterials, and guiding the reader through their core concepts, the book aids the reader in identifying the most appropriate option based on use-case and need. The use of nanoparticles to improve plant health and crop yield has seen significant progress, but there remain challenges including size fixation of nanoparticles, toxicity, dose selection, formulation development, cast and production ration and the synthesis methods. The synthesis procedure significantly impacts the effectiveness of nanoparticles on the plant system, and nano- encapsulation is one of the most promising and effective techniques, not only controlling the release of nanoparticle but also able to enhance the surface area, reducing the toxic effect of NPs if any, and increasing the effective impact of NPs on plants. This volume in the Nanomaterial-Plant Interaction series explores the impact of encapsulated nanoparticles at the morphological, physiological and molecular levels on environmental stress. It discusses the latest tools, including -omics approaches, to evaluate the mechanism of action of encapsulated nanoparticles in regulating growth.• Informs strategies for engineering stress-tolerant plants and increasing productivity• Emphasizes the assimilation and transportation of encapsulated nanoparticles in plants• Covers the impact of encapsulated nanoparticles at morphological, physiological and molecular levels in addressing abiotic and biotic stresses

著者について

Dr. Renato currently Vice-Head of the Department of Physics and Chemistry at the São Paulo State University-UNESP, Brazil. He is also Head of the Laboratory of Environmental NanoChemistry at UNESP. He received his M.Sc. (2011) and Ph.D. (2014) in Biochemistry from the University of Campinas (UNICAMP), Brazil. He did one year and a half post-doctoral positions at the International Iberian Nanotechnology Laboratory-INL (Portugal) and Federal University of ABC (Brazil). His primary research interests focus on environmental nanotechnology based on the development of advanced nano-enabled materials for agriculture, interactions of nanomaterials with natural colloids, exposure, and risk assessment.

Dr. Durgesh Kumar Tripathi is currently an Associate Professor at Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India. He is the recipient of ‘Dr DS Kothari Post-Doctoral Fellowship’ of the UGC, New Delhi. Dr. Tripathi has received his D.Phil. in Science from University of Allahabad, India. During this period, Dr. Tripathi worked extensively on phytolith analysis, crop stress physiology, agro-nanotechnology and molecular biology. He has expertise on laser spectroscopy. His research interests encompass stress tolerance mechanisms in plants. Presently, he is working with nano-materials and their interactions with plants to find out their detoxification mechanisms, he is also working on Silicon, Nitric oxide and hormonal crosstalk against abiotic stress in plants.

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。