Oscillatory Models in General Relativity

·
· De Gruyter Studies in Mathematical Physics Book 41 · Walter de Gruyter GmbH & Co KG
Ebook
152
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists.

Contents
Part I: Dissipative geometry and general relativity theory
Pseudo-Riemannian geometry and general relativity
Dynamics of universe models
Anisotropic and homogeneous universe models
Metric waves in a nonstationary universe and dissipative oscillator
Bosonic and fermionic models of a Friedman–Robertson–Walker universe
Time dependent constants in an oscillatory universe

Part II: Variational principle for time dependent oscillations and dissipations
Lagrangian and Hamilton descriptions
Damped oscillator: classical and quantum theory
Sturm–Liouville problem as a damped oscillator with time dependent damping and frequency
Riccati representation of time dependent damped oscillators
Quantization of the harmonic oscillator with time dependent parameters

About the author

Esra Russel, New York University Abu Dhabi, United Arab Emirates, Oktay Pashaev, Izmir Institute of Technology, Turkey

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.