Essentials of Statistical Inference

·
· Cambridge Series in Statistical and Probabilistic Mathematics หนังสือเล่มที่ 16 · Cambridge University Press
eBook
236
หน้า
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

Aimed at advanced undergraduate and graduate students in mathematics and related disciplines, this book presents the concepts and results underlying the Bayesian, frequentist and Fisherian approaches, with particular emphasis on the contrasts between them. Computational ideas are explained, as well as basic mathematical theory. Written in a lucid and informal style, this concise text provides both basic material on the main approaches to inference, as well as more advanced material on developments in statistical theory, including: material on Bayesian computation, such as MCMC, higher-order likelihood theory, predictive inference, bootstrap methods and conditional inference. It contains numerous extended examples of the application of formal inference techniques to real data, as well as historical commentary on the development of the subject. Throughout, the text concentrates on concepts, rather than mathematical detail, while maintaining appropriate levels of formality. Each chapter ends with a set of accessible problems.

เกี่ยวกับผู้แต่ง

G. A. Young is Professor of Statistics at Imperial College London.

R. L. Smith is Mark L. Reed Distinguished Professor of Statistics at the University of North Carolina, Chapel Hill.

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ