Essentials of Statistical Inference

·
· Cambridge Series in Statistical and Probabilistic Mathematics 第 16 冊 · Cambridge University Press
電子書
236
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

Aimed at advanced undergraduate and graduate students in mathematics and related disciplines, this book presents the concepts and results underlying the Bayesian, frequentist and Fisherian approaches, with particular emphasis on the contrasts between them. Computational ideas are explained, as well as basic mathematical theory. Written in a lucid and informal style, this concise text provides both basic material on the main approaches to inference, as well as more advanced material on developments in statistical theory, including: material on Bayesian computation, such as MCMC, higher-order likelihood theory, predictive inference, bootstrap methods and conditional inference. It contains numerous extended examples of the application of formal inference techniques to real data, as well as historical commentary on the development of the subject. Throughout, the text concentrates on concepts, rather than mathematical detail, while maintaining appropriate levels of formality. Each chapter ends with a set of accessible problems.

關於作者

G. A. Young is Professor of Statistics at Imperial College London.

R. L. Smith is Mark L. Reed Distinguished Professor of Statistics at the University of North Carolina, Chapel Hill.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。