Exercises in Graph Theory

· · · ·
· Texts in the Mathematical Sciences Boek 19 · Springer Science & Business Media
E-boek
356
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This book supplements the textbook of the authors" Lectures on Graph The ory" [6] by more than thousand exercises of varying complexity. The books match each other in their contents, notations, and terminology. The authors hope that both students and lecturers will find this book helpful for mastering and verifying the understanding of the peculiarities of graphs. The exercises are grouped into eleven chapters and numerous sections accord ing to the topics of graph theory: paths, cycles, components, subgraphs, re constructibility, operations on graphs, graphs and matrices, trees, independence, matchings, coverings, connectivity, matroids, planarity, Eulerian and Hamiltonian graphs, degree sequences, colorings, digraphs, hypergraphs. Each section starts with main definitions and brief theoretical discussions. They constitute a minimal background, just a reminder, for solving the exercises. the presented facts and a more extended exposition may be found in Proofs of the mentioned textbook of the authors, as well as in many other books in graph theory. Most exercises are supplied with answers and hints. In many cases complete solutions are given. At the end of the book you may find the index of terms and the glossary of notations. The "Bibliography" list refers only to the books used by the authors during the preparation of the exercisebook. Clearly, it mentions only a fraction of available books in graph theory. The invention of the authors was also driven by numerous journal articles, which are impossible to list here.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.