Feasible Mathematics II

·
· Progress in Computer Science and Applied Logic Livre 13 · Springer Science & Business Media
5,0
1 avis
E-book
447
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computa tion device, such as a 'lUring machine or boolean circuit. Feasible math ematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on notation, and unbounded minimization (S. Bellantoni); an alternative way of looking at NP problems is introduced which focuses on which pa rameters of the problem are the cause of its computational complexity and completeness, density and separation/collapse results are given for a struc ture theory for parametrized problems (R. Downey and M. Fellows); new characterizations of PTIME and LINEAR SPACE are given using predicative recurrence over all finite tiers of certain stratified free algebras (D.

Notes et avis

5,0
1 avis

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.