Fourier Analysis on Number Fields

ยท
ยท Graduate Texts in Mathematics เบซเบปเบงเบ—เบต 186 ยท Springer Science & Business Media
เบ›เบถเป‰เบกเบญเบตเบšเบธเบ
354
เปœเป‰เบฒ
เบšเปเปˆเป„เบ”เป‰เบขเบฑเป‰เบ‡เบขเบทเบ™เบเบฒเบ™เบˆเบฑเบ”เบญเบฑเบ™เบ”เบฑเบš เปเบฅเบฐ เบ„เบณเบ•เบดเบŠเบปเบก เบชเบถเบเบชเบฒเป€เบžเบตเปˆเบกเป€เบ•เบตเบก

เบเปˆเบฝเบงเบเบฑเบšเบ›เบถเป‰เบก e-book เบ™เบตเป‰

This book grew out of notes from several courses that the first author has taught over the past nine years at the California Institute of Technology, and earlier at the Johns Hopkins University, Cornell University, the University of Chicago, and the University of Crete. Our general aim is to provide a modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasizing harmonic analysis on topological groups. Our more particular goal is to cover Jolm Tate's visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries-technical prereq uisites that are often foreign to the typical, more algebraically inclined number theorist. Most of the existing treatments of Tate's thesis, including Tate's own, range from terse to cryptic; our intent is to be more leisurely, more comprehen sive, and more comprehensible. To this end we have assembled material that has admittedly been treated elsewhere, but not in a single volume with so much detail and not with our particular focus. We address our text to students who have taken a year of graduate-level courses in algebra, analysis, and topology. While our choice of objects and methods is naturally guided by the specific mathematical goals of the text, our approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups.

เปƒเบซเป‰เบ„เบฐเปเบ™เบ™ e-book เบ™เบตเป‰

เบšเบญเบเบžเบงเบเป€เบฎเบปเบฒเบงเปˆเบฒเบ—เปˆเบฒเบ™เบ„เบดเบ”เปเบ™เบงเปƒเบ”.

เบญเปˆเบฒเบ™โ€‹เบ‚เปเป‰โ€‹เบกเบนเบ™โ€‹เบ‚เปˆเบฒเบงโ€‹เบชเบฒเบ™

เบชเบฐเบกเบฒเบ”เป‚เบŸเบ™ เปเบฅเบฐ เปเบ—เบฑเบšเป€เบฅเบฑเบ”
เบ•เบดเบ”เบ•เบฑเป‰เบ‡ เปเบญเบฑเบš Google Play Books เบชเบณเบฅเบฑเบš Android เปเบฅเบฐ iPad/iPhone. เบกเบฑเบ™เบŠเบดเป‰เบ‡เบ‚เปเป‰เบกเบนเบ™เป‚เบ”เบเบญเบฑเบ”เบ•เบฐเป‚เบ™เบกเบฑเบ”เบเบฑเบšเบšเบฑเบ™เบŠเบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™ เปเบฅเบฐ เบญเบฐเบ™เบธเบเบฒเบ”เปƒเบซเป‰เบ—เปˆเบฒเบ™เบญเปˆเบฒเบ™เบ—เบฒเบ‡เบญเบญเบ™เบฅเบฒเบ เบซเบผเบท เปเบšเบšเบญเบญเบšเบฅเบฒเบเป„เบ”เป‰ เบšเปเปˆเบงเปˆเบฒเบ—เปˆเบฒเบ™เบˆเบฐเบขเบนเปˆเปƒเบช.
เปเบฅเบฑเบšเบ—เบฑเบญเบš เปเบฅเบฐ เบ„เบญเบกเบžเบดเบงเป€เบ•เบต
เบ—เปˆเบฒเบ™เบชเบฒเบกเบฒเบ”เบŸเบฑเบ‡เบ›เบถเป‰เบกเบชเบฝเบ‡เบ—เบตเปˆเบŠเบทเป‰เปƒเบ™ Google Play เป‚เบ”เบเปƒเบŠเป‰เป‚เบ›เบฃเปเบเบฃเบกเบ—เปˆเบญเบ‡เป€เบงเบฑเบšเบ‚เบญเบ‡เบ„เบญเบกเบžเบดเบงเป€เบ•เบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™เป„เบ”เป‰.
eReaders เปเบฅเบฐเบญเบธเบ›เบฐเบเบญเบ™เบญเบทเปˆเบ™เป†
เป€เบžเบทเปˆเบญเบญเปˆเบฒเบ™เปƒเบ™เบญเบธเบ›เบฐเบเบญเบ™ e-ink เป€เบŠเบฑเปˆเบ™: Kobo eReader, เบ—เปˆเบฒเบ™เบˆเบณเป€เบ›เบฑเบ™เบ•เป‰เบญเบ‡เบ”เบฒเบงเป‚เบซเบผเบ”เป„เบŸเบฅเปŒ เปเบฅเบฐ เป‚เบญเบ™เบเป‰เบฒเบเบกเบฑเบ™เป„เบ›เปƒเบชเปˆเบญเบธเบ›เบฐเบเบญเบ™เบ‚เบญเบ‡เบ—เปˆเบฒเบ™เบเปˆเบญเบ™. เบ›เบฐเบ•เบดเบšเบฑเบ”เบ•เบฒเบกเบ„เบณเปเบ™เบฐเบ™เบณเบฅเบฐเบญเบฝเบ”เบ‚เบญเบ‡ เบชเบนเบ™เบŠเปˆเบงเบเป€เบซเบผเบทเบญ เป€เบžเบทเปˆเบญเป‚เบญเบ™เบเป‰เบฒเบเป„เบŸเบฅเปŒเป„เปƒเบชเปˆ eReader เบ—เบตเปˆเบฎเบญเบ‡เบฎเบฑเบš.