Stochastic Calculus for Fractional Brownian Motion and Applications

· · ·
· Springer Science & Business Media
5.0
1 review
Ebook
330
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study.

fBm represents a natural one-parameter extension of classical Brownian motion therefore it is natural to ask if a stochastic calculus for fBm can be developed. This is not obvious, since fBm is neither a semimartingale (except when H = 1⁄2), nor a Markov process so the classical mathematical machineries for stochastic calculus are not available in the fBm case.

Several approaches have been used to develop the concept of stochastic calculus for fBm. The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches.

Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices.

This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance. Aspects of the book will also be useful in other fields where fBm can be used as a model for applications.

Ratings and reviews

5.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.