Free Boundaries in Viscous Flows

·
· The IMA Volumes in Mathematics and its Applications 61. grāmata · Springer Science & Business Media
E-grāmata
112
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

It is increasingly the case that models of natural phenomena and materials processing systems involve viscous flows with free surfaces. These free boundaries are interfaces of the fluid with either second immiscible fluids or else deformable solid boundaries. The deformation can be due to mechanical displacement or as is the case here, due to phase transformation; the solid can melt or freeze. This volume highlights a broad range of subjects on interfacial phenomena. There is an overview of the mathematical description of viscous free-surface flows, a description of the current understanding of mathematical issues that arise in these models and a discussion of high-order-accuracy boundary-integral methods for the solution of viscous free surface flows. There is the mathematical analysis of particular flows: long-wave instabilities in viscous-film flows, analysis of long-wave instabilities leading to Marangoni convection, and de§ scriptions of the interaction of convection with morphological stability during directional solidification. This book is geared toward anyone with an interest in free-boundary problems, from mathematical analysts to material scientists; it will be useful to applied mathematicians, physicists, and engineers alike.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.