Frontiers In Approximation Theory

· Series On Concrete And Applicable Mathematics Книга 16 · World Scientific
Електронна книга
228
Страници
Отговаря на условията
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and Gauss-Weierstrass types. Then, it continues in a very detailed and extensive chapter on approximation by interpolating operators induced by neural networks, a connection to computer science. This book ends with the approximation theory and functional analysis on time scales, a very modern topic, detailing all the pros and cons of this method.The results in this book are expected to find applications in many areas of pure and applied mathematics. So far, very little is written about fractional approximation theory which is at its infancy. As such, it is suitable for researchers, graduate students, and performing seminars as well as an invaluable resource for all science libraries.

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.