Functional Integration and Semiclassical Expansions

· ·
· Mathematics and Its Applications Buku 10 · Springer Science & Business Media
e-Buku
315
Halaman
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

This book is intended as a fairly complete presentation of what··'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.