Fuzzy Spiking Neural Networks

· GRIN Verlag
電子書
103
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

Master's Thesis from the year 2011 in the subject Engineering - Computer Engineering, grade: 8.84, Manav Rachna International University, course: Master of Technology (M.Tech), language: English, abstract: This dissertation presents an introductory knowledge to computational neuroscience and major emphasize on the branch of computational neuroscience called Spiking Neural Networks (SNNs). SNNs are also called the third generation neural networks. It has become now a major field of Soft Computing. In this we talk about the temporal characteristics’ of neuron and studied the dynamics of it. We have presented SNNs architecture with fuzzy reasoning capability. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train frequencies and behave in a similar manner as fuzzy membership functions. The network of SNNs consists of three layers that is input, hidden and output layer. The topology of this network is based on Radial basis Network, which can be regarded as universal approximators. The input layer receives the input in the form of frequency which produces the spikes through linear encoding. There is another method of encoding called Poisson encoding; this encoding is used where the data is large. The hidden layer use Receptive Field (RF) to process the input and thus it is frequency selective. The output layer is only responsible for learning. The learning is based on local learning. The XOR classification problem is used to test the capabilities of the network. There is a problem of continuous updating of weight arises. This issue of weight is resolved by using STDP window and fuzzy reasoning. The dissertation demonstrates how it is possible to obtain fuzzy reasoning capability from biological models of spiking neurons. The fuzzy spiking neural network implements fuzzy rules by configuration of receptive fields, antecedent conjunction with excitatory and inhibitory connections, and inferencing via a biologically plausible supervised learning algorithm. In this way, the resulting system utilizes a higher level of knowledge representation.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。