General Topology III: Paracompactness, Function Spaces, Descriptive Theory

· Encyclopaedia of Mathematical Sciences Boek 51 · Springer Science & Business Media
E-boek
232
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.