General Topology III: Paracompactness, Function Spaces, Descriptive Theory

· Encyclopaedia of Mathematical Sciences Libro 51 · Springer Science & Business Media
eBook
232
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.