General Topology III: Paracompactness, Function Spaces, Descriptive Theory

· Encyclopaedia of Mathematical Sciences Buku 51 · Springer Science & Business Media
eBook
232
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.