Modular Lie Algebras

· Springer Science & Business Media
Ebook
166
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The study of the structure of Lie algebras over arbitrary fields is now a little more than thirty years old. The first papers, to my know ledge, which undertook this study as an end in itself were those of JACOBSON (" Rational methods in the theory of Lie algebras ") in the Annals, and of LANDHERR ("Uber einfache Liesche Ringe") in the Hamburg Abhandlungen, both in 1935. Over fields of characteristic zero, these thirty years have seen the ideas and results inherited from LIE, KILLING, E. CARTAN and WEYL developed and given new depth, meaning and elegance by many contributors. Much of this work is presented in [47, 64, 128 and 234] of the bibliography. For those who find the rationalization for the study of Lie algebras in their connections with Lie groups, satisfying counterparts to these connections have been found over general non-modular fields, with the substitution of the formal groups of BOCHNER [40] (see also DIEUDONNE [108]), or that of the algebraic linear groups of CHEVALLEY [71], for the usual Lie group. In particular, the relation with algebraic linear groups has stimulated the study of Lie algebras of linear transformations. When one admits to consideration Lie algebras over a base field of positive characteristic (such are the algebras to which the title of this monograph refers), he encounters a new and initially confusing scene.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.