Geometric Flows on Planar Lattices

·
· Springer Nature
Carte electronică
134
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.

Despre autor

Andrea Braides is professor of Mathematical Analysis at the University of Rome Tor Vergata. He is the author among others of the books Gamma-convergence for Beginners and (with A.Defranceschi) Homogenization of Multiple Integrals. He was an invited speaker at the 2014 International Congress of Mathematicians in Seoul in the section Mathematics in Science and Technology.

Margherita Solci is professor of Mathematical Analysis at the University of Sassari at Alghero. She works on various topics involving variational convergence; in particular, static and dynamic passages from discrete to continuum.


Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.