Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations

·
· Springer Science & Business Media
E-book
278
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger's, Einstein's and Newton's equations. Historically, problems in these areas were approached using the Fourier transform or path integrals, although in some cases (e.g., the case of quartic oscillators) these methods do not work. New geometric methods are introduced in the work that have the advantage of providing quantitative or at least qualitative descriptions of operators, many of which cannot be treated by other methods. And, conservation laws of the Euler–Lagrange equations are employed to solve the equations of motion qualitatively when quantitative analysis is not possible.

Main topics include: Lagrangian formalism on Riemannian manifolds; energy momentum tensor and conservation laws; Hamiltonian formalism; Hamilton–Jacobi theory; harmonic functions, maps, and geodesics; fundamental solutions for heat operators with potential; and a variational approach to mechanical curves. The text is enriched with good examples and exercises at the end of every chapter.

Geometric Mechanics on Riemannian Manifolds is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.