Geometric Partial Differential Equations - Part I

·
· Handbook of Numerical Analysis Cartea 21 · Elsevier
Carte electronică
710
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. - About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization - Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading - The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs

Despre autor

Andrea Bonito is professor in the Department of Mathematics at Texas A&M University.Together with Ricardo H. Nochetto they have more than forty years of experience in the variational formulation and approximation of a wide range of geometric partial differential equations (PDEs). Their work encompass fundamental studies of numerical PDEs: the design, analysis and implementation of efficient numerical algorithms for the approximation of PDEs; and their applications in modern engineering, science, and bio-medical problems.

Ricardo H. Nochetto is professor in the Department of Mathematics and the Institute for Physical Science and Technology at the University of Maryland, College Park.Together with Andrea Bonito they have more than forty years of experience in the variational formulation and approximation of a wide range of geometric partial differential equations (PDEs). Their work encompass fundamental studies of numerical PDEs: the design, analysis and implementation of efficient numerical algorithms for the approximation of PDEs; and their applications in modern engineering, science, and bio-medical problems.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.