Geometric Spanner Networks

·
· Cambridge University Press
eBook
483
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Aimed at an audience of researchers and graduate students in computational geometry and algorithm design, this book uses the Geometric Spanner Network Problem to showcase a number of useful algorithmic techniques, data structure strategies, and geometric analysis techniques with many applications, practical and theoretical. The authors present rigorous descriptions of the main algorithms and their analyses for different variations of the Geometric Spanner Network Problem. Though the basic ideas behind most of these algorithms are intuitive, very few are easy to describe and analyze. For most of the algorithms, nontrivial data structures need to be designed, and nontrivial techniques need to be developed in order for analysis to take place. Still, there are several basic principles and results that are used throughout the book. One of the most important is the powerful well-separated pair decomposition. This decomposition is used as a starting point for several of the spanner constructions.

저자 정보

Giri Narasimhan earned a B.Tech. in Electrical Engineering from the Indian Institute of Technology in Mumbai, India, and a Ph.D. in Computer Science from the University of Wisconsin in Madison, Wisconsin, USA. He was a member of the faculty at the University of Memphis, and is currently at Florida International University.

Michiel Smid received a M.Sc. degree in Mathematics from the University of Technology in Eidenhoven and a Ph.D. degree in Computer Science from the University of Amsterdam. He has held teaching positions at the Max-Planck-Institute for Computer Science in Saarbrucken, King's College in London, and the University of Magdenburg. Since 2001, he has been at Carleton University, where he is currently a professor of Computer Science.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.