Geometrical Foundations of Asymptotic Inference

·
· John Wiley & Sons
4,0
2 рецензии
Е-книга
376
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing:
* Basic properties of curved exponential families
* Elements of second-order, asymptotic theory
* The Fisher-Efron-Amari theory of information loss and recovery
* Jeffreys-Rao information-metric Riemannian geometry
* Curvature measures of nonlinearity
* Geometrically motivated diagnostics for exponential familyregression
* Geometrical theory of divergence functions
* A classification of and introduction to additional work in thefield

Оцени и рецензии

4,0
2 рецензии

За авторот

ROBERT E. KASS is Professor and Head of the Department of Statistics at Carnegie Mellon University. PAUL W. VOS is Associate Professor of Biostatistics at East Carolina University. Both authors received their PhDs from the University of Chicago.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.