Geometrical Foundations of Asymptotic Inference

·
· John Wiley & Sons
4.0
2条评价
电子书
376
评分和评价未经验证  了解详情

关于此电子书

Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing:
* Basic properties of curved exponential families
* Elements of second-order, asymptotic theory
* The Fisher-Efron-Amari theory of information loss and recovery
* Jeffreys-Rao information-metric Riemannian geometry
* Curvature measures of nonlinearity
* Geometrically motivated diagnostics for exponential familyregression
* Geometrical theory of divergence functions
* A classification of and introduction to additional work in thefield

评分和评价

4.0
2条评价

作者简介

ROBERT E. KASS is Professor and Head of the Department of Statistics at Carnegie Mellon University. PAUL W. VOS is Associate Professor of Biostatistics at East Carolina University. Both authors received their PhDs from the University of Chicago.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。