Geometrical Foundations of Asymptotic Inference

·
· John Wiley & Sons
4.0
2則評論
電子書
376
評分和評論未經驗證  瞭解詳情

關於本電子書

Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing:
* Basic properties of curved exponential families
* Elements of second-order, asymptotic theory
* The Fisher-Efron-Amari theory of information loss and recovery
* Jeffreys-Rao information-metric Riemannian geometry
* Curvature measures of nonlinearity
* Geometrically motivated diagnostics for exponential familyregression
* Geometrical theory of divergence functions
* A classification of and introduction to additional work in thefield

評分和評論

4.0
2則評論

關於作者

ROBERT E. KASS is Professor and Head of the Department of Statistics at Carnegie Mellon University. PAUL W. VOS is Associate Professor of Biostatistics at East Carolina University. Both authors received their PhDs from the University of Chicago.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。