Geometry VI: Riemannian Geometry

· Encyclopaedia of Mathematical Sciences Llibre 91 · Springer Science & Business Media
2,0
1 ressenya
Llibre electrònic
504
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

The original Russian edition of this book is the fifth in my series "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summarized without proofs as a rule. In the original edition, the book is divided not into chapters but into lec tures. This is explained by its origin as classroom lectures that I gave. The principal distinction between chapters and lectures is that the material of each chapter should be complete to a certain extent and the length of chapters can differ, while, in contrast, all lectures should be approximately the same in length and the topic of any lecture can change suddenly in the middle. For the series "Encyclopedia of Mathematical Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first ten chapters are devoted to the geometry of affine connection spaces. In the first chapter, I present the main properties of geodesics in these spaces. Chapter 2 is devoted to the formalism of covariant derivatives, torsion tensor, and curvature tensor. The major part of Chap.

Puntuacions i ressenyes

2,0
1 ressenya

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.