Geometry VI: Riemannian Geometry

· Encyclopaedia of Mathematical Sciences Bok 91 · Springer Science & Business Media
2,0
1 anmeldelse
E-bok
504
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The original Russian edition of this book is the fifth in my series "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summarized without proofs as a rule. In the original edition, the book is divided not into chapters but into lec tures. This is explained by its origin as classroom lectures that I gave. The principal distinction between chapters and lectures is that the material of each chapter should be complete to a certain extent and the length of chapters can differ, while, in contrast, all lectures should be approximately the same in length and the topic of any lecture can change suddenly in the middle. For the series "Encyclopedia of Mathematical Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first ten chapters are devoted to the geometry of affine connection spaces. In the first chapter, I present the main properties of geodesics in these spaces. Chapter 2 is devoted to the formalism of covariant derivatives, torsion tensor, and curvature tensor. The major part of Chap.

Vurderinger og anmeldelser

2,0
1 anmeldelse

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.