Geometry and Billiards

· Student Mathematical Library Cartea 30 · American Mathematical Soc.
1,0
O recenzie
Carte electronică
176
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards.The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry.

Evaluări și recenzii

1,0
O recenzie

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.