Geometry of Isotropic Convex Bodies

· · ·
· Mathematical Surveys and Monographs 196권 · American Mathematical Soc.
eBook
594
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The study of high-dimensional convex bodies from
a geometric and analytic point of view, with an emphasis on the
dependence of various parameters on the dimension stands at the
intersection of classical convex geometry and the local theory of
Banach spaces. It is also closely linked to many other fields, such as
probability theory, partial differential equations, Riemannian
geometry, harmonic analysis and combinatorics. It is now understood
that the convexity assumption forces most of the volume of a
high-dimensional convex body to be concentrated in some canonical way
and the main question is whether, under some natural normalization, the
answer to many fundamental questions should be independent of the
dimension.

The aim of this book is to introduce a number of
well-known questions regarding the distribution of volume in
high-dimensional convex bodies, which are exactly of this nature: among
them are the slicing problem, the thin shell conjecture and the
Kannan-Lovász-Simonovits conjecture. This book provides a
self-contained and up to date account of the progress that has been
made in the last fifteen years.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.