Graphs and Discrete Dirichlet Spaces

· ·
· Grundlehren der mathematischen Wissenschaften 第 358 本图书 · Springer Nature
电子书
668
评分和评价未经验证  了解详情

关于此电子书

The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach.

The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case.

Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.

作者简介

Matthias Keller studied in Chemnitz and obtained his PhD in Jena. He held positions in Princeton, Jerusalem and Haifa before becoming a professor at the University of Potsdam.

Daniel Lenz obtained his PhD in Frankfurt am Main. After prolonged stays in Jerusalem, Chemnitz and Houston, he is now a professor at the Friedrich Schiller University in Jena.

Radoslaw Wojciechowski got his PhD at the Graduate Center of the City University of New York following his undergraduate studies at Indiana University Bloomington. After a postdoc period in Lisbon he is now a professor at York College and the Graduate Center in New York City.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。