Greedoids

· ·
· Algorithms and Combinatorics Bok 4 · Springer Science & Business Media
E-bok
214
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

With the advent of computers, algorithmic principles play an ever increasing role in mathematics. Algorithms have to exploit the structure of the underlying mathematical object, and properties exploited by algorithms are often closely tied to classical structural analysis in mathematics. This connection between algorithms and structure is in particular apparent in discrete mathematics, where proofs are often constructive, and can be turned into algorithms more directly. The principle of greediness plays a fundamental role both in the design of continuous algorithms (where it is called the steepest descent or gradient method) and of discrete algorithms. The discrete structure most closely related to greediness is a matroid; in fact, matroids may be characterized axiomatically as those independence systems for which the greedy solution is optimal for certain optimization problems (e.g. linear objective functions, bottleneck functions). This book is an attempt to unify different approaches and to lead the reader from fundamental results in matroid theory to the current borderline of open research problems. The monograph begins by reviewing classical concepts from matroid theory and extending them to greedoids. It then proceeds to the discussion of subclasses like interval greedoids, antimatroids or convex geometries, greedoids on partially ordered sets and greedoid intersections. Emphasis is placed on optimization problems in greedois. An algorithmic characterization of greedoids in terms of the greedy algorithm is derived, the behaviour with respect to linear functions is investigated, the shortest path problem for graphs is extended to a class of greedoids, linear descriptions of antimatroid polyhedra and complexity results are given and the Rado-Hall theorem on transversals is generalized. The self-contained volume which assumes only a basic familarity with combinatorial optimization ends with a chapter on topological results in connection with greedoids.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.