Algebraic Function Fields and Codes: Edition 2

· Graduate Texts in Mathematics Book 254 · Springer Science & Business Media
4.0
2 reviews
Ebook
360
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

15 years after the ?rst printing of Algebraic Function Fields and Codes,the mathematics editors of Springer Verlag encouraged me to revise and extend the book. Besides numerous minor corrections and amendments, the second edition di?ers from the ?rst one in two respects. Firstly I have included a series of exercises at the end of each chapter. Some of these exercises are fairly easy and should help the reader to understand the basic concepts, others are more advanced and cover additional material. Secondly a new chapter titled “Asymptotic Bounds for the Number of Rational Places” has been added. This chapter contains a detailed presentation of the asymptotic theory of function ?elds over ?nite ?elds, including the explicit construction of some asymptotically good and optimal towers. Based on these towers, a complete and self-contained proof of the Tsfasman-Vladut-Zink Theorem is given. This theorem is perhaps the most beautiful application of function ?elds to coding theory. The codes which are constructed from algebraic function ?elds were ?rst introduced by V. D. Goppa. Accordingly I referred to them in the ?rst edition as geometric Goppa codes. Since this terminology has not generally been - cepted in the literature, I now use the more common term algebraic geometry codes or AG codes. I would like to thank Alp Bassa, Arnaldo Garcia, Cem Guneri, ̈ Sevan Harput and Alev Topuzo? glu for their help in preparing the second edition.

Ratings and reviews

4.0
2 reviews
Anil Das
February 3, 2021
AAA
Did you find this helpful?

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.