Higher Index Theory

· Cambridge Studies in Advanced Mathematics Книга 189 · Cambridge University Press
Е-книга
595
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.

За авторот

Rufus Willett is Professor of Mathematics at the University of Hawaii, Manoa. He has interdisciplinary research interests across large-scale geometry, K-theory, index theory, manifold topology and geometry, and operator algebras.

Guoliang Yu is the Powell Chair in Mathematics and University Distinguished Professor at Texas A & M University. He was an invited speaker at the International Congress of Mathematicians in 2006, is a Fellow of the American Mathematical Society and a Simons Fellow in Mathematics. His research interests include large-scale geometry, K-theory, index theory, manifold topology and geometry, and operator algebras.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.