Lectures on Hilbert Schemes of Points on Surfaces

· University Lecture Series Book 18 · American Mathematical Soc.
Ebook
132
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The Hilbert scheme $X{[n] $ of a surface $X$ describes collections of $n$ (not necessarily distinct) points on $X$. More precisely, it is the moduli space for $0$-dimensional subschemes of $X$ of length $n$. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory-even theoretical physics. The discussion in the book reflects this feature of Hilbert schemes. For example, a construction of the representation of the infinite dimensional Heisenberg algebra (i.e., Fock space) is presented. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field theory, etc. However, the construction presented in this volume is completely unique and provides the unexplored link between geometry and representation theory. The book offers a nice survey of current developments in this rapidly growing subject. It is suitable as a text at the advanced graduate level.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.