Homogeneous Manifolds with Negative Curvature, Part II

·
· American Mathematical Society: Memoirs of the American Mathematical Society Kitab 178 · American Mathematical Soc.
E-kitab
102
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

This paper is the second in a series dealing with the structure of the full isometry group I(M) for M a connected, simply connected, homogeneous, Riemannian manifold with non-positive sectional curvature. It is shown that every such manifold determines canonically a conjugacy class of subgroups of I(M) which act simply transitively on M. The class of all simply transitive subgroups of I(M) is identified and it is demonstrated that an arbitrary simply transitive subgroup may be modified slightly to produce a subgroup in the canonical class. The class of all connected Lie groups G for which there exists such a manifold M with G isomorphic to the identity connected component of I(M) is identified by means of a list of structural conditions on the Lie algebra of G. Given an arbitrary connected, simply connected Riemannian manifold M together with a given simply transitive group S of isometries, an algorithm is exhibited to explicitly compute the Lie algebra of I(M) from the transported Riemannian data on S.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.