Tropical Algebraic Geometry

· ·
· Oberwolfach Seminars Book 35 · Springer Science & Business Media
5.0
1 review
Ebook
104
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is based on the lectures given at the Oberwolfach Seminar on Tropical Algebraic Geometry in October 2004. Tropical Geometry ?rst appeared as a subject of its own in 2002, while its roots can be traced back at least to Bergman’s work [1] on logarithmic limit sets. Tropical Geometry is now a rapidly developing area of mathematics. It is int- twined with algebraic and symplectic geometry, geometric combinatorics, in- grablesystems, and statistical physics. Tropical Geometry can be viewed as a sort of algebraic geometry with the underlying algebra based on the so-called tropical numbers. The tropicalnumbers (the term “tropical” comesfrom computer science and commemorates Brazil, in particular a contribution of the Brazilian school to the language recognition problem) are the real numbers enhanced with negative in?nity and equipped with two arithmetic operations called tropical addition and tropical multiplication. The tropical addition is the operation of taking the m- imum. The tropical multiplication is the conventional addition. These operations are commutative, associative and satisfy the distribution law. It turns out that such tropical algebra describes some meaningful geometric objects, namely, the Tropical Varieties. From the topological point of view the tropical varieties are piecewise-linearpolyhedral complexes equipped with a particular geometric str- ture coming from tropical algebra. From the point of view of complex geometry this geometric structure is the worst possible degeneration of complex structure on a manifold.

Ratings and reviews

5.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.