Implizite Runge-Kutta-Formeln

·
· Springer-Verlag
4.0
리뷰 1개
eBook
182
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Implizite RUNGE-KUTTA-Formeln wurden erstmals in einer Reihe von Arbeiten ([1], [2], [3]) von J.C. BUTCHER systematisch untersucht. Hierbei wurden ver schiedene Annahmen uber die Lage der n Stiitzstellen getroffen. Fur die behan delten Falle wurde die Fehlerordnung angegeben und der Beweis fUr die Ein deutigkeit des jeweiligen Verfahrens gefUhrt. Die Berechnung der Koeffizienten durch Auflosen der sie bestimmenden Gleichungssysteme wurde nur fUr n ~ 6 durchgefiihrt. Bis n = 11 wurden sie zahlenmaf3ig in [4] mit 20 Stellen hinter dem Komma angegeben. In [5] findet sich zwar ein Beweis, dan die impliziten RUNGE-KuTTA-Formeln mit der Stutzstellenverteilung nach GAUSS eine Fehlerordnung von 2 n + 1 haben, jedoch wird hier nichts uber die praktische Verwendbarkeit dieser Formeln im allgemeinen Falle gesagt. Das im folgenden angegebene Rechenverfahren fUr die Koeffizienten wurde auf der GAMM-Tagung in Wien 1965 [6] vorgetragen. Das Verfahren umgeht die von BUTCHER angewandte Methode der numerischen Losung eines linearen Gleichungssystems von n Gleichungen mit n rechten Seiten. Die hier entwickelte formelmaf3ige Beschreibung des Verfahrens fiihrt zu einer bequemen Ermittlung der inversen Matrix des Gleichungssystems. Damit ergibt sich eine betrachtliche Ersparnis an Rechenaufwand.

평점 및 리뷰

4.0
리뷰 1개

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.