Implizite Runge-Kutta-Formeln

·
· Springer-Verlag
4.0
1 則評論
電子書
182
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

Implizite RUNGE-KUTTA-Formeln wurden erstmals in einer Reihe von Arbeiten ([1], [2], [3]) von J.C. BUTCHER systematisch untersucht. Hierbei wurden ver schiedene Annahmen uber die Lage der n Stiitzstellen getroffen. Fur die behan delten Falle wurde die Fehlerordnung angegeben und der Beweis fUr die Ein deutigkeit des jeweiligen Verfahrens gefUhrt. Die Berechnung der Koeffizienten durch Auflosen der sie bestimmenden Gleichungssysteme wurde nur fUr n ~ 6 durchgefiihrt. Bis n = 11 wurden sie zahlenmaf3ig in [4] mit 20 Stellen hinter dem Komma angegeben. In [5] findet sich zwar ein Beweis, dan die impliziten RUNGE-KuTTA-Formeln mit der Stutzstellenverteilung nach GAUSS eine Fehlerordnung von 2 n + 1 haben, jedoch wird hier nichts uber die praktische Verwendbarkeit dieser Formeln im allgemeinen Falle gesagt. Das im folgenden angegebene Rechenverfahren fUr die Koeffizienten wurde auf der GAMM-Tagung in Wien 1965 [6] vorgetragen. Das Verfahren umgeht die von BUTCHER angewandte Methode der numerischen Losung eines linearen Gleichungssystems von n Gleichungen mit n rechten Seiten. Die hier entwickelte formelmaf3ige Beschreibung des Verfahrens fiihrt zu einer bequemen Ermittlung der inversen Matrix des Gleichungssystems. Damit ergibt sich eine betrachtliche Ersparnis an Rechenaufwand.

評分和評論

4.0
1 則評論

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。