Infinite Abelian Groups

· Courier Dover Publications
Электронная книга
112
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

In the Introduction to this concise monograph, the author states his two main goals: first, "to make the theory of infinite abelian groups available in a convenient form to the mathematical public; second, to help students acquire some of the techniques used in modern infinite algebra." Suitable for advanced undergraduates and graduate students in mathematics, the text requires no extensive background beyond the rudiments of group theory.
Starting with examples of abelian groups, the treatment explores torsion groups, Zorn's lemma, divisible groups, pure subgroups, groups of bounded order, and direct sums of cyclic groups. Subsequent chapters examine Ulm's theorem, modules and linear transformations, Banach spaces, valuation rings, torsion-free and complete modules, algebraic compactness, characteristic submodules, and the ring of endomorphisms. Many exercises appear throughout the book, along with a guide to the literature and a detailed bibliography.

Об авторе

Irving Kaplansky (1917–2006) received his Ph.D. in Mathematics from Harvard in 1941. He worked with the U.S. Government's Applied Mathematics Panel during World War II and taught at the University of Chicago from 1945–84, where he was Chairman of the Mathematics Department from 1962–67. He was Director of the Mathematical Sciences Research Institute in Berkeley, California, from 1984-92 and was President of the American Mathematical Society from 1985–86. Dover also publishes his Linear Algebra and Geometry: A Second Course.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.