The present work has a led to an additional route for post synthesis property tuning in MXenes by manipulation of surface termination elements. This enables a unique toolbox for property tuning which is not available to other 2D materials and is highly beneficial for applications that is dependent on surface reactions. Furthermore, chemical and structural characterization of terminations on single sheets is essential to rule out the influence of intercalants or contamination that is typically present in multilayer MXene samples or thin films. For that purpose, a method for preparing isolated contamination free single sheets of MXene samples for transmission electron microscopy (TEM) characterization was established. In order to determine vacancy and termination sites, atomically resolved scanning (S)TEM imaging and image simulations was carried out. Two main processes were employed to substitute the termination elements.
1) An initial thermal treatment in vacuum facilitates F desorption and it was shown that O-terminations rearranges on the evacuated sites. H2 gas exposure in a controlled environment demonstrated a removal of the remaining O-terminations. As a result, termination-free MXene is possible to realize under vacuum conditions.
2) CO2 was introduced as a first non-inherent termination on MXene by in situ CO2 gas exposure at low temperatures. That was a first demonstration of Ti3C2TX as promising material for carbon capture. Additionally, O-saturated surfaces were demonstrated after introduction of O2 gas on the F-depleted Ti3C2TX MXene, which is highly relevant for hydrogen evolution reactions where fully O-terminated Ti3C2TX are predicted to improve efficiency.
A Lewis acid melt synthesis method was used to realize the first MXene exclusively terminated with Cl. Moreover, this was the first report of a MXene directly synthesised with terminations other than O, OH, and F.
Furthermore, we have expanded the space of property tuning by introduction of chemical ordering, by selective etching of Y in an alloyed (Mo2/3Y1/3)2CTX MXene. This either produced chemical ordering with one M (Mo) element and vacancies, or ordering between two M (Mo and Y) elements. This was further reported to significantly increase volumetric capacitance because of the increased number of active sites around vacancies, leading to an increasing charge density. As a final note, the stability of Nb2CTX MXene under ambient conditions was investigated. It was found that the surface Nb adatoms, present after etching, got oxidized over time which resulted in local clustering and effectively degraded the MXene.
This work has demonstrated reproducible surface characterization methods for determining termination elements and sites in 2D MXenes, that is ultimately governing MXene properties. Most importantly, we report on a new approach for MXene property tuning as well as contributing to several existing property tuning approaches.