Instruction to Statistical Pattern Recognition

· Elsevier
電子書
386
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

Introduction to Statistical Pattern Recognition introduces the reader to statistical pattern recognition, with emphasis on statistical decision and estimation. Pattern recognition problems are discussed in terms of the eigenvalues and eigenvectors. Comprised of 11 chapters, this book opens with an overview of the formulation of pattern recognition problems. The next chapter is devoted to linear algebra, with particular reference to the properties of random variables and vectors. Hypothesis testing and parameter estimation are then discussed, along with error probability estimation and linear classifiers. The following chapters focus on successive approaches where the classifier is adaptively adjusted each time one sample is observed; feature selection and linear mapping for one distribution and multidistributions; and problems of nonlinear mapping. The final chapter describes a clustering algorithm and considers criteria for both parametric and nonparametric clustering. This monograph will serve as a text for the introductory courses of pattern recognition as well as a reference book for practitioners in the fields of mathematics and statistics.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。