Integral Equations Of First Kind

· Series On Soviet And East European Mathematics 7. grāmata · World Scientific
E-grāmata
276
Lappuses
Piemērota
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.