Intelligent Tire Systems

· Springer Nature
eBook
166
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Vehicle performance is largely controlled by the tire dynamic characteristics mediated by forces and moments generated at the tire-road contact patch. The tire may undergo deformations that increase the longitudinal and lateral forces within the contact patch. It is crucial to develop a model for the accurate prediction of tire characteristics, as this will enable optimization of the overall performance of vehicles. Research has been conducted to identify new strategies for tire measurement and modeling vehicle dynamics analysis. Autonomous vehicles (AVs), electric vehicles (EVs), shared sets, and connected vehicles have further revolutionized interdisciplinary research on vehicle and tire systems. The performance and reliability of vehicle active safety and advanced driver assistance systems (ADASs) are primarily influenced by the tire force capacity, which cannot be measured. High active safety and optimized ADAS are particularly crucial for automated driving systems (ADS) to guarantee passenger safety in intelligent transportation settings. The establishment of online measurement or estimation tools for tire states, especially for autonomous vehicles, is critical.

저자 정보

NAN XU: Nan Xu received his B.Sc. and M.Sc. degrees from Harbin Institute of Technology in 2007 and 2009, respectively, and the Ph.D. degree in vehicle engineering from Jilin University in 2012. He is currently an Associate Professor with the State Key Laboratory of Automotive Simulation and Control, Jilin University of China. In 2019, he was a Visiting Scholar with the Department of Mechanical and Mechatronics Engineering, University of Waterloo. His current research focuses on tire dynamics and control, intelligent tires, vehicle state estimation, and motion control of electric vehicles and autonomous vehicles.

HASSAN ASKARI: Hassan Askari was born in Rasht, Iran. He received his B.Sc., M.Sc., and Ph.D. degrees from the Iran University of Science and Technology, Tehran, Iran, University of Ontario Institute of Technology, Oshawa, Canada, and the University of Waterloo, Waterloo, Canada, in 2011, 2014, and 2019, respectively. He published more than 75 journals and conference papers in the areas of nonlinear vibrations, applied mathematics, nanogenerators, intelligent tires, and self-powered sensors. He co-authored one book and one book chapter both published by Springer. He is an active reviewer for more than 50 journals and an editorial board member of several scientific and international journals.

AMIR KHAJEPOUR: Amir Khajepour is a Professor of mechanical and mechatronics engineering at the University of Waterloo, Waterloo, ON, Canada, where he is also the Canada Research Chair in mechatronic vehicle systems and senior NSERC/General Motors Industrial Research Chair in Holistic Vehicle Control. He has developed an extensive research program that applies his expertise in several key multidisciplinary areas. He is a fellow of The Engineering Institute of Canada, The American Society of Mechanical Engineers, and The Canadian Society of Mechanical Engineering.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.