Intelligent Tire Systems

· Springer Nature
電子書
166
評分和評論未經驗證  瞭解詳情

關於本電子書

Vehicle performance is largely controlled by the tire dynamic characteristics mediated by forces and moments generated at the tire-road contact patch. The tire may undergo deformations that increase the longitudinal and lateral forces within the contact patch. It is crucial to develop a model for the accurate prediction of tire characteristics, as this will enable optimization of the overall performance of vehicles. Research has been conducted to identify new strategies for tire measurement and modeling vehicle dynamics analysis. Autonomous vehicles (AVs), electric vehicles (EVs), shared sets, and connected vehicles have further revolutionized interdisciplinary research on vehicle and tire systems. The performance and reliability of vehicle active safety and advanced driver assistance systems (ADASs) are primarily influenced by the tire force capacity, which cannot be measured. High active safety and optimized ADAS are particularly crucial for automated driving systems (ADS) to guarantee passenger safety in intelligent transportation settings. The establishment of online measurement or estimation tools for tire states, especially for autonomous vehicles, is critical.

關於作者

NAN XU: Nan Xu received his B.Sc. and M.Sc. degrees from Harbin Institute of Technology in 2007 and 2009, respectively, and the Ph.D. degree in vehicle engineering from Jilin University in 2012. He is currently an Associate Professor with the State Key Laboratory of Automotive Simulation and Control, Jilin University of China. In 2019, he was a Visiting Scholar with the Department of Mechanical and Mechatronics Engineering, University of Waterloo. His current research focuses on tire dynamics and control, intelligent tires, vehicle state estimation, and motion control of electric vehicles and autonomous vehicles.

HASSAN ASKARI: Hassan Askari was born in Rasht, Iran. He received his B.Sc., M.Sc., and Ph.D. degrees from the Iran University of Science and Technology, Tehran, Iran, University of Ontario Institute of Technology, Oshawa, Canada, and the University of Waterloo, Waterloo, Canada, in 2011, 2014, and 2019, respectively. He published more than 75 journals and conference papers in the areas of nonlinear vibrations, applied mathematics, nanogenerators, intelligent tires, and self-powered sensors. He co-authored one book and one book chapter both published by Springer. He is an active reviewer for more than 50 journals and an editorial board member of several scientific and international journals.

AMIR KHAJEPOUR: Amir Khajepour is a Professor of mechanical and mechatronics engineering at the University of Waterloo, Waterloo, ON, Canada, where he is also the Canada Research Chair in mechatronic vehicle systems and senior NSERC/General Motors Industrial Research Chair in Holistic Vehicle Control. He has developed an extensive research program that applies his expertise in several key multidisciplinary areas. He is a fellow of The Engineering Institute of Canada, The American Society of Mechanical Engineers, and The Canadian Society of Mechanical Engineering.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。