Introduction to Approximate Groups

· London Mathematical Society Student Texts Bok 94 · Cambridge University Press
E-bok
221
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.

Om forfatteren

Matthew C. H. Tointon is the Stokes Research Fellow at Pembroke College, Cambridge, affiliated to the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. He has held postdoctoral positions at Homerton College, Cambridge, at the Université de Paris-Sud and at the Université de Neuchâtel, Switzerland. Tointon is the author of numerous research papers on approximate groups and he proved the strongest known results describing the structure of nilpotent and residually nilpotent approximate groups.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.