Introduction to Differential Equations Using Sage

·
· JHU Press
E-Book
280
Seiten
Zulässig
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

Differential equations can be taught using Sage as an inventive new approach.

David Joyner and Marshall Hampton's lucid textbook explains differential equations using the free and open-source mathematical software Sage.

Since its release in 2005, Sage has acquired a substantial following among mathematicians, but its first user was Joyner, who is credited with helping famed mathematician William Stein turn the program into a usable and popular choice.

Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently. It's a creative and forward-thinking approach to math instruction.

Topics include:

• First-Order Differential Equations
• Incorporation of Newtonian Mechanics
• Second-Order Differential Equations
• The Annihilator Method
• Using Linear Algebra with Differential Equations
• Nonlinear Systems
• Partial Differential Equations
• Romeo and Juliet

Autoren-Profil

David Joyner is a professor in the Mathematics Department at the U.S. Naval Academy. He is the author of Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, also published by Johns Hopkins. Marshall Hampton is a professor in the Department of Mathematics and Statistics at the University of Minnesota, Duluth.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.