Introduction to Differential Equations Using Sage

·
· JHU Press
Libro electrónico
280
Páxinas
Apto
As valoracións e as recensións non están verificadas  Máis información

Acerca deste libro electrónico

Differential equations can be taught using Sage as an inventive new approach.

David Joyner and Marshall Hampton's lucid textbook explains differential equations using the free and open-source mathematical software Sage.

Since its release in 2005, Sage has acquired a substantial following among mathematicians, but its first user was Joyner, who is credited with helping famed mathematician William Stein turn the program into a usable and popular choice.

Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently. It's a creative and forward-thinking approach to math instruction.

Topics include:

• First-Order Differential Equations
• Incorporation of Newtonian Mechanics
• Second-Order Differential Equations
• The Annihilator Method
• Using Linear Algebra with Differential Equations
• Nonlinear Systems
• Partial Differential Equations
• Romeo and Juliet

Acerca do autor

David Joyner is a professor in the Mathematics Department at the U.S. Naval Academy. He is the author of Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, also published by Johns Hopkins. Marshall Hampton is a professor in the Department of Mathematics and Statistics at the University of Minnesota, Duluth.

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de Axuda para transferir ficheiros a lectores electrónicos admitidos.