Introduction to Maple

· Springer Science & Business Media
Carte electronică
497
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

In symbolic computation on computers, also known as computer algebra, keyboard and display replace the traditional pencil and paper in doing mathematical computations. Interactive computer programs, which are called computer algebra systems, allow their users to compute not only with numbers, but also with symbols, formulae, equations, and so on. Many mathematical computations such as differentiation, integration, and series expansion of functions, and inversion of matrices with symbolic entries, can be carried out quickly, with emphasis on exactness of results, and without much human effort. Computer algebra systems are powerful tools for mathematicians, physicists, chemists, engineers, technicians, psychologists, sociologists, ... , in short, for anybody who needs to do mathematical computations. Com puter algebra systems are indispensable in modern pure and applied scien tific research and education. This book is a gentle introduction to one of the modern computer algebra systems, viz., Maple. Primary emphasis is on learning what can be done with Maple and how it can be used to solve (applied) mathematical problems. To this end, the book contains many examples and exercises, both elementary and more sophisticated. They stimulate you to use Maple and encourage you to find your way through the system. An advice: read this book in conjunction with the Maple system, try the examples, make variations of them, and try to solve the exercises.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.