Introduction to Mathematical Oncology

· ·
· CRC Press
Sách điện tử
490
Trang
Đủ điều kiện
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models.

After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts.

Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.

Giới thiệu tác giả

Yang Kuang is a professor of mathematics at Arizona State University (ASU). Dr. Kuang is the author or editor of more than 150 refereed journal publications and 11 books and the founder and editor of Mathematical Biosciences and Engineering. He is well known for his pioneering work in applying delay differential equation to models of biology and medicine. His recent research interests focus on the formulation of scientifically well-grounded and computationally tractable mathematical models to describe the rich and intriguing dynamics of various within-host diseases and their treatments. These models have the potential to speed up much-needed personalized medicine development. He earned a Ph.D in mathematics from the University of Alberta.

John D. Nagy is a professor of biology and former chair of the Department of Life Sciences at Scottsdale Community College (SCC). He is also an adjunct professor in the School of Mathematical and Statistical Sciences at ASU. He is the founding director of an undergraduate research program in mathematical biology at both ASU and SCC. Dr. Nagy’s primary research interests focus on the evolutionary dynamics of disease, including the application of mathematics and principles of evolutionary ecology to cancer and disease biology. He pioneered the "hypertumor" hypothesis and recently addressed how evolution shapes malignant characteristics of cancer. He earned a Ph.D. in mathematical biology from ASU.

Steffen E. Eikenberry is completing his M.D. at the University of Southern California (USC), as the final component of a combined M.D./Ph.D. program. He earned a Ph.D. in biomedical engineering from USC, with his dissertation studies focused on hierarchical model building for immune–pathogen interaction. Dr. Eikenberry is particularly interested in a careful approach to mathematical model building, understanding how specific functional forms affect model dynamics, and using modeling to address well-defined clinical questions, especially those pertaining to cancer treatment and screening. These well-formulated mathematical models can potentially form a conceptual foundation that informs clinical research and practice in the future.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.