Introduction to Option Pricing Theory

·
· Springer Science & Business Media
電子書籍
269
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。